EE 508

Lecture 33

Oscillators, VCOs, and Oscillator/VCO-Derived Filters

Review from last lecture:

Only two of these circuits are useful directly as bias generators!

Inverse Widlar
Not stable equilibrium point!

(b)
(d)

Inverse Widlar

$$
\left.\begin{array}{l}
\mathrm{V}_{01}=\mathrm{V}_{\mathrm{Tn}}\left(\frac{1-\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{1}}{\mathrm{M}_{\mathrm{IW}} \mathrm{~W}_{1} \mathrm{~L}_{2}}}}{1+\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{3}}{\mathrm{~W}_{3} \mathrm{~L}_{2}}}-\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{1}}{\mathrm{M}_{\mathrm{IW}} \mathrm{~W}_{1} \mathrm{~L}_{2}}}}\right) \\
\mathrm{V}_{02}=\mathrm{V}_{\mathrm{Tn}}\left(\frac{1+\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{3}}{\mathrm{~W}_{3} \mathrm{~L}_{2}}}-2 \sqrt{\frac{\mathrm{~W}_{2} \mathrm{~L}_{1}}{\mathrm{M}_{\mathrm{IW}} \mathrm{~W}_{1} \mathrm{~L}_{2}}}}{1+\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{3}}{\mathrm{~W}_{3} \mathrm{~L}_{2}}}-\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{1}}{\mathrm{M}_{\mathrm{IW}} \mathrm{~W}_{1} \mathrm{~L}_{2}}}}\right.
\end{array}\right)
$$

Widlar

$$
\begin{aligned}
& \mathrm{V}_{01}=\left(\frac{\theta_{1}}{2} \pm \sqrt{\frac{\theta_{1} \mathrm{~V}_{\mathrm{Tn}}}{2}+\left(\frac{\theta_{1}}{2}\right)^{2}}\right)\left(1-\sqrt{\frac{\mathrm{W}_{1} \mathrm{~L}_{2}}{\mathrm{M}_{\mathrm{W}} \mathrm{~W}_{2} \mathrm{~L}_{1}}}\right) \\
& \mathrm{V}_{02}=\mathrm{V}_{\mathrm{Tn}}+\frac{\theta_{1}}{2} \pm \sqrt{\frac{\theta_{1} \mathrm{~V}_{\mathrm{Tn}}}{2}+\left(\frac{\theta_{1}}{2}\right)^{2}}
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{D} 1}=\mathrm{M}_{\mathrm{W}} \mathrm{I}_{\mathrm{D} 2}
$$

$$
\theta_{1}=\frac{\mathrm{M}_{\mathrm{W}} 2 \mathrm{~L}_{1}}{\mathrm{R} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{1}}
$$

(a)

(c)

Widlar
Not stable equilibrium point!

Review from last lecture:

Transconductance Linearization Strategies

Review from last lecture:

Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with either a dc current or a dc voltage

$$
T(s)=\frac{g_{m}}{g_{m}+s C}
$$

Programmable First-Order Low-Pass Filter

Voltage-controlled Filters

Filter characteristics can be controlled by an analog voltage ($\mathrm{V}_{\text {CTRL }}$) an analog current ($\mathrm{I}_{\text {CTRL }}$), or a Boolean signal

Much more controllability than with a potentiometer
Useful when microntroller manages a signal path requiring filters

Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with either a dc current or a dc voltage

Programmable Second-Order Filter

Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with either a dc current or a dc voltage

$$
V_{\mathrm{OUT}}=\frac{\mathrm{s}^{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~V}_{\mathrm{C}}+\mathrm{sC} \mathrm{~g}_{\mathrm{m} 2} \mathrm{~V}_{\mathrm{B}}+\mathrm{g}_{\mathrm{m} 1} \mathrm{~g}_{\mathrm{m} 2} \mathrm{~V}_{\mathrm{A}}}{\mathrm{~s}^{2} \mathrm{C}_{1} \mathrm{C}_{2}+\mathrm{sC} \mathrm{C}_{\mathrm{m} 2}+\mathrm{g}_{\mathrm{m} 1} \mathrm{~g}_{\mathrm{m} 2}} \quad \omega_{0}=\sqrt{\frac{g_{\mathrm{m} 1} g_{\mathrm{m} 2}}{\mathrm{C}_{1} \mathrm{C}_{2}}}
$$

Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with either a dc current or a dc voltage

$$
V_{\text {out }}=\frac{s^{2} C_{1} C_{2} V_{C}+s C_{1} g_{m 2} V_{B}+g_{m 1} g_{m 2} V_{A}}{s^{2} C_{1} C_{2}+s C_{1} g_{m 2} g_{m 3} R+g_{m 1} g_{m 2}}
$$

$$
\begin{aligned}
& \omega_{0}=\sqrt{\frac{g_{m} g_{m} 2}{C_{1} C_{2}}} \\
& \mathrm{Q}=\frac{1}{g_{m 3} R} \sqrt{\frac{\mathrm{C}_{2} \mathrm{~g}_{\mathrm{m} 1}}{\mathrm{C}_{1} \mathrm{~g}_{\mathrm{m} 2}}}
\end{aligned}
$$

Programmable Second-Order Filter

Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with either a dc current or a dc voltage

$$
\begin{array}{ll}
V_{\text {OUT }}=\frac{s^{2} C_{1} C_{2} V_{C}+s C_{1} g_{m 2} V_{B}+g_{m 1} g_{m 2} V_{A}}{s^{2} C_{1} C_{2}+s C_{1} g_{m 3}+g_{m 1} g_{m 2}} & \omega_{0}=\sqrt{\frac{g_{m} g_{m 2}}{C_{1} C_{2}}} \\
& Q=\sqrt{\frac{C_{2}}{C_{1}}} \frac{\sqrt{g_{m} g_{m 2}}}{g_{m 3}}
\end{array}
$$

Programmable Second-Order Filter

Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with either a dc current or a dc voltage

$$
\begin{array}{ll}
V_{\text {OUT }}=\frac{s^{2} C_{1} C_{2} V_{C}+s C_{1} g_{m 3} V_{B}+g_{m 1} g_{m 2} V_{A}}{s^{2} C_{1} C_{2}+s C_{1} g_{m 3}+g_{m 1} g_{m 2}} & \omega_{0}=\sqrt{\frac{g_{m 1} g_{m 2}}{C_{1} C_{2}}} \\
Q=\sqrt{\frac{C_{2}}{C_{1}} \frac{\sqrt{g_{m} g_{m}}}{g_{m 3}}}
\end{array}
$$

Programmable Second-Order Filter

Programmable Filter Structures

It will be assumed that the transconductance gain can be programmed with either a dc current or a dc voltage

$$
\begin{array}{ll}
T(s)=\frac{C_{2}}{C_{2}+C_{3}} \frac{s^{2} C_{1} C_{2}+g_{m 1} g_{m 2}}{s^{2} C_{1} C_{2}+s g_{m 2} \frac{C_{1} C_{2}}{C_{2}+C_{3}}+g_{m 1} g_{m 2} \frac{C_{2}}{C_{2}+C_{3}}} & \omega_{0}=\sqrt{\frac{g_{m} g_{m 2}}{C_{1}\left(C_{2}+C_{3}\right)}} \\
Q=\sqrt{\frac{\left(C_{2}+C_{3}\right)}{C_{1}} \sqrt{\frac{g_{m 1}}{g_{m 2}}}}
\end{array}
$$

Programmable Notch Filter (Can be used as a programmable elliptic filter)

Programmable Filter Components

It will be assumed that the transconductance gain can be programmed with either a dc current or a dc voltage

If Z_{L} is a capacitor serve as either positive or negative programmable inductors

Many other useful programmable filter components and filter structures possible

Question:

What is the relationship, if any, between a filter and an oscillator or VCO?

i.e. Can an oscillator be viewed as a filter with no input?

What is the relationship, if any, between a filter and an oscillator or VCO?

Will focus on modifying oscillator structures to form high frequency narrowband filters

Claim: Narrow band filters are dependent primarily on the poles close to the imaginary axis and affected little by poles that are farther away

Goal: Obtain very high frequency filter structures

What is the relationship, if any, between a filter and an oscillator or VCO?

- When power is applied to an oscillator, it initially behaves as a small-signal linear network
- When operating linearly, the oscillator has poles (but no zeros)
- Poles are ideally on the imaginary axis or appear as cc pairs in the RHP
- There is a wealth of literature on the design of oscillators
- Oscillators often are designed to operate at very high frequencies
- If cc poles of a filter are moved to RHP it will become an oscillator
- If RHP poles of an oscillator are moved to the LHP it will become a filter if an input is applied
- Can oscillators be modified to become filters?

Oscillator Background:

Consider a cascaded integrator loop comprised of n integrators

This structure is often used to build oscillators

(assume an odd number of inverting integrators)

$$
\begin{gathered}
X_{\text {OUT }}=-\left(\frac{I_{0}}{s}\right)^{n} X_{\text {OUT }} \\
X_{\text {OUT }}\left(s^{n}+I_{0}^{n}\right)=0 \\
D(s)=s^{n}+I_{0}^{n}
\end{gathered}
$$

Consider the poles of $\mathrm{D}(\mathrm{s})=\mathrm{s}^{\mathrm{n}}+I_{0}^{\mathrm{n}}$

$$
\begin{aligned}
& \mathrm{s}^{\mathrm{n}}+I_{0}^{\mathrm{n}}=0 \\
& \mathrm{~s}^{\mathrm{n}}=-I_{0}^{\mathrm{n}} \\
& \mathrm{~s}=\left[-I_{0}^{\mathrm{n}}\right]^{\frac{1}{n}} \\
& \mathrm{~s}=[-1]^{\frac{1}{n}}\left[I_{0}^{\mathrm{n}}\right]^{\frac{1}{n}} \\
& \mathrm{~s}=I_{0}[-1]^{\frac{1}{n}}
\end{aligned}
$$

Poles are the n roots of -1 scaled by I_{0}

Roots of -1 :

Roots are uniformly spaced on a unit circle

Consider the poles of $\mathrm{D}(\mathrm{s})=\mathrm{s}^{\mathrm{n}}+I_{0}^{\mathrm{n}}$

Some useful theorems

Theorem: A rational fraction $T(s)=\frac{N(s)}{\prod_{i=1}^{n}\left(s-p_{i}\right)}$ with simple poles can be expressed in partial fraction form as $T(s)=\sum_{i=1}^{n} \frac{A_{i}}{s-p_{i}}$
where $\quad A_{i}=\left.\left(s-p_{i}\right) T(s)\right|_{s=p_{p}} \quad$ for $1 \leq j \leq n$

Theorem: The impulse response of a rational fraction $\mathrm{T}(\mathrm{s})$ with simple poles can be expressed as $r(t)=\sum_{i=1}^{n} A_{i} e^{p, t} \quad$ where the numbers A_{i} are the coefficients
in the partial fraction expansion of $\mathrm{T}(\mathrm{s})$

Theorem: If p_{i} is a simple complex pole of the rational fraction $T(s)$, then the partial fraction expansion terms in the impulse response corresponding to p_{i} and $p_{i}{ }^{*}$ can be expressed as $\frac{A_{i}}{s-p_{i}}+\frac{A_{i}^{*}}{s-p_{i}^{*}}$

Theorem: If $p_{i}=\alpha_{i}+j \beta_{i}$ is a simple pole with non-zero imaginary part of the rational fraction $T(s)$, then the impulse response terms corresponding to the poles p_{i} and $p_{i}{ }^{*}$ in the partial fraction expansion can be expressed as

$$
\left|A_{i}\right| e^{\alpha_{i} t} \cos \left(\beta_{i} t+\theta_{i}\right)
$$

where θ_{i} is the angle of the complex quantity A_{i}

Observe $r(t)$ term corresponding to any complex pole pair is real !

Theorem: If all poles of an n-th order rational fraction $\mathrm{T}(\mathrm{s})$ are simple and have a non-zero Imaginary part, then the impulse response can be expressed as

$$
\sum_{i=1}^{n / 2}\left|A_{i}\right| e^{\alpha t} \cos \left(\beta_{i} t+\theta_{i}\right)
$$

where $\theta_{i}, A_{i}, \alpha_{i}$, and β_{i} are as defined before

Theorem: If an odd-order rational fraction has one pole on the negative real axis at α_{0} and n simple poles that have a non-zero Imaginary part, then the impulse response can be expressed as

$$
A_{0} e^{\alpha_{0} t}+\sum_{i=1}^{n / 2}\left|A_{i}\right| e^{\alpha_{i}} \cos \left(\beta_{i} t+\theta_{i}\right)
$$

where $\theta_{i}, A_{i}, \alpha_{i}$, and β_{i} are as defined before

Observe $r(t)$ is real for both even and odd n !

Consider the following 3-pole situation

Poles of $\quad \mathrm{D}(\mathrm{s})=\mathrm{s}^{\mathrm{n}}+I_{0}^{\mathrm{n}}$

for cc pole pair:

$$
\begin{gathered}
\alpha=0.5 \mathrm{I}_{0} \\
\beta=0.866 \mathrm{I}_{0}
\end{gathered}
$$

Oscillatory output at startup with any small impulse input:

$$
\left|A_{i}\right| e^{\alpha t} \cos \left(\beta_{i} t+\theta_{i}\right)
$$

Starts at $\omega=0.866 \mathrm{I}_{0}$ and will slow down as nonlinearities limit amplitude

Consider the following 3-pole situation

$$
\text { Poles of } \quad \mathrm{D}(\mathrm{~s})=\mathrm{s}^{\mathrm{n}}+I_{0}^{\mathrm{n}}
$$

So, to get a high ω_{0}, want β as large as possible

Consider now the filter obtained by adding a loss of α_{L} to the integrators

Will now determine α_{L} and I_{0} needed to get a desired pole Q and ω_{0} by moving all poles so that right-most pole pair is dominant high-frequency pole pair of filter

The values of α and β are dependent upon I_{0} but the angle θ is only dependent upon the number of integrators in the oscillator or VCO

$$
\alpha+j \beta=I_{0}(\cos \theta+j \sin \theta)
$$

Define the location of the filter pole to be

$$
\alpha_{F}+j \beta_{F}
$$

It follows that

$$
\beta_{F}=\beta \quad \alpha_{F}=\alpha-\alpha_{L}
$$

The relationship between the filter parameters
is well known

$$
\beta_{F}=\frac{\omega_{0}}{2 Q} \sqrt{4 Q^{2}-1} \quad \alpha_{F}=-\frac{\omega_{0}}{2 Q}
$$

Thus for any n

$$
I_{0}=\frac{\omega_{0}}{(\sin \theta) 2 Q} \sqrt{4 Q^{2}-1}
$$

$$
\alpha_{\mathrm{L}}=\frac{\omega_{0}}{2 \mathrm{Q}}+I_{0} \cos \theta=\frac{\omega_{0}}{2 \mathrm{Q}}+\frac{\omega_{0}}{2 \mathrm{Q}(\tan \theta)} \sqrt{4 \mathrm{Q}^{2}-1}
$$

Will a two-stage structure give the highest frequency of operation?

$\omega_{0}=\sqrt{(\alpha-\Delta \alpha)^{2}+\beta^{2}} \longrightarrow \omega_{0}=\sqrt{(-\Delta \alpha)^{2}+\beta^{2}}$

- Even though the two-stage structure may not oscillate, can work as a filter!
- Need odd number of inversions in integrators
- Can add phase lead if necessary

Oscillator Background:

What will happen with a circuit that has two pole-pairs in the RHP?

General form of response for odd number of poles:

$$
A_{0} e^{\alpha_{0} t}+\sum_{i=1}^{n / 2}\left|A_{i}\right| e^{\alpha_{i} t} \cos \left(\beta_{i} t+\theta_{i}\right)
$$

The impulse response (for $n=7$) will have two decaying exponential terms and two growing exponential terms

What will happen with a circuit that has two pole-pairs in the RHP?

-0.62349	-0.781831482
0.222521	-0.974927912
0.900969	-0.433883739
0.900969	0.433883739
0.222521	0.974927912
-0.62349	0.781831482
-1	$3.67545 \mathrm{E}-16$

$$
\begin{array}{ll}
\alpha_{1}=0.2225 & \beta_{1}=0.974 \\
\alpha_{2}=0.9009 & \beta_{2}=0.4338
\end{array}
$$

Consider the growing exponential terms and normalize to $\mathrm{I}_{0}=1$

$$
\left|A_{1}\right| e^{\alpha_{1} t} \cos \left(\beta_{1} t+\theta_{1}\right)+\left|A_{2}\right| e^{\alpha_{2} t} \cos \left(\beta_{2} t+\theta_{2}\right)
$$

At $t=145$ (after only 10 periods of the lower frequency signal)

$$
\mathrm{r}=\left.\frac{\mathrm{e}^{\alpha_{\mathrm{t}}}}{\mathrm{e}^{\mathrm{a}_{\mathrm{t}}}}\right|_{t=145}=\frac{\mathrm{e}^{.9009 \bullet 145}}{\mathrm{e}^{22225 \cdot 145}}=5.2 \times 10^{42}
$$

The lower frequency oscillation will completely dominate!

What will happen with a circuit that has two pole-pairs in the RHP?

Thanks to Chen for these plots
Figure $14 \mathrm{~N}=8$ impulse response
Can only see the lower frequency component!

What will happen with a circuit that has two pole-pairs in the RHP?

Thanks to Chen for these plots

Figure $7 \mathrm{~N}=8$ the impulse response of two poles
After even only two periods of the lower frequency waveform, it completely dominates!

How do we guarantee that we have a net coefficient of +1 in $D(s)$?

$$
\mathrm{D}(\mathrm{~s})=\mathrm{s}^{\mathrm{n}}+I_{0}^{\mathrm{n}}
$$

$$
\begin{aligned}
& x_{\text {out }}=\left(\prod_{i=1}^{n} \mathrm{a}_{i}\left(\frac{I_{0}}{s}\right)\right) x_{\text {out }} \mathrm{a}_{\mathrm{i}} \in\{-1,1\} \\
& \mathrm{D}(\mathrm{~s})=\mathrm{s}^{\mathrm{n}}-\left(\prod_{i=1}^{n} \mathrm{a}_{i}\right) I_{0}^{n} \longrightarrow \prod_{i=1}^{n} \mathrm{a}_{i}=-1
\end{aligned}
$$

Must have an odd number of inversions in the loop !
If n is odd, all stages can be inverting and identical !

How do we guarantee that we have a net coefficient of +1 in $D(s)$?

$$
\mathrm{D}(\mathrm{~s})=\mathrm{s}^{\mathrm{n}}+I_{0}^{\mathrm{n}}
$$

If fully differential or fully balanced, must have an odd number of crossings of outputs

Applicable for both even and odd order loops

Inputs to Oscillator-Derived Filters:

Most applicable to designing $2^{\text {nd }}$-order high frequency narrow band filters

- Add loss to delay stages
- Multiple Input Locations Often Possible
- Natural Input is Input to delay stage

- Add loss to delay stages
- Often Just Salvage Stages (drop feedback loop)
- Natural input is input to delay stage

A lossy integrator stage

$$
\begin{array}{r}
I(s)=\frac{-g_{\mathrm{m} 1} / \mathrm{C}_{\mathrm{x}}}{\mathrm{~s}+\mathrm{g}_{\mathrm{m} 2} / \mathrm{C}_{\mathrm{x}}} \\
I_{0}=\mathrm{g}_{\mathrm{m} 1} / \mathrm{C}_{\mathrm{x}} \\
\alpha_{L}=\mathrm{g}_{\mathrm{m} 2} / \mathrm{C}_{\mathrm{x}}
\end{array}
$$

A fully-differential voltage-controlled integrator stage

Will need CMFB circuit

A fully-differential voltage-controlled integrator stage with loss

Will need CMFB circuit

A fully-differential voltage-controlled integrator stage with loss
(almost same as previous)

Will need CMFB circuit

Example:

Using the single-stage lossy integrator, design the integrator to meet a given ω_{0} and Q requirement

Recall:

$$
\begin{align*}
& I_{0}=\frac{\omega_{0}}{(\sin \theta) 2 \mathrm{Q}} \sqrt{4 \mathrm{Q}^{2}-1} \tag{1}\\
& \alpha_{\mathrm{L}}=\frac{\omega_{0}}{2 \mathrm{Q}}+\frac{\omega_{0}}{2 \mathrm{Q}(\tan \theta)} \sqrt{4 \mathrm{Q}^{2}-1} \tag{2}
\end{align*}
$$

Substituting for I_{0} and α_{L} we obtain:

$$
I_{0}=\mathrm{g}_{\mathrm{m} 1} / \mathrm{C}_{\mathrm{x}}
$$

$$
\begin{equation*}
\frac{g_{m 1}}{C_{x}}=\frac{\omega_{0}}{(\sin \theta) 2 Q} \sqrt{4 Q^{2}-1} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{g_{m 2}}{C_{x}}=\frac{\omega_{0}}{2 Q}+\frac{\omega_{0}}{2 Q(\tan \theta)} \sqrt{4 Q^{2}-1} \tag{4}
\end{equation*}
$$

Example:

Using the single-stage lossy integrator, design the integrator to meet a given ω_{0} and Q requirement
Expressing $\mathrm{g}_{\mathrm{m} 1}$ and $\mathrm{g}_{\mathrm{m} 2}$ in terms of design parameters:

$$
\begin{align*}
& \frac{\mu C_{O X} W_{1} V_{E B 1}}{L_{1} C_{X}}=\frac{\omega_{0}}{(\sin \theta) 2 Q} \sqrt{4 Q^{2}-1} \tag{5}\\
& \frac{\mu C_{O X} W_{2} V_{E B 2}}{L_{2} C_{X}}=\frac{\omega_{0}}{2 Q}+\frac{\omega_{0}}{2 Q(\tan \theta)} \sqrt{4 Q^{2}-1} \tag{6}
\end{align*}
$$

If we assume $I_{B}=0$, equating drain currents obtain:

$$
\begin{equation*}
V_{E B 2}=V_{E B 1} \sqrt{\frac{W_{1} L_{2}}{W_{2} L_{1}}} \tag{7}
\end{equation*}
$$

$I_{0}=g_{\mathrm{m} 1} / \mathrm{C}_{\mathrm{x}}$
$\alpha_{L}=g_{\mathrm{m} 2} / \mathrm{C}_{\mathrm{x}}$
Thus the previous two expressions can be rewritten as :

$$
\begin{align*}
& \frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~V}_{\mathrm{EB} 1}}{\mathrm{C}_{\mathrm{X}}}\left[\frac{\mathrm{~W}_{1}}{L_{1}}\right]=\frac{\omega_{0}}{(\sin \theta) 2 \mathrm{Q}} \sqrt{4 \mathrm{Q}^{2}-1} \tag{8}\\
& \frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~V}_{\mathrm{EB} 1}}{\mathrm{C}_{\mathrm{X}}}\left[\frac{W_{1} W_{2}}{L_{1} L_{2}}\right]=\frac{\omega_{0}}{2 \mathrm{Q}}+\frac{\omega_{0}}{2 \mathrm{Q}(\tan \theta)} \sqrt{4 \mathrm{Q}^{2}-1} \tag{9}
\end{align*}
$$

Example:

Using the single-stage lossy integrator, design the integrator to meet a given ω_{0} and Q requirement

$$
\begin{aligned}
& \frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~V}_{\mathrm{EB} 1}}{\mathrm{C}_{\mathrm{X}}}\left[\frac{W_{1}}{L_{1}}\right]=\frac{\omega_{0}}{(\sin \theta) 2 \mathrm{Q}} \sqrt{4 Q^{2}-1} \\
& \frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~V}_{\mathrm{EB} 1}}{\mathrm{C}_{\mathrm{X}}}\left[\frac{W_{1} W_{2}}{L_{1} L_{2}}\right]=\frac{\omega_{0}}{2 \mathrm{Q}}+\frac{\omega_{0}}{2 \mathrm{Q}(\tan \theta)} \sqrt{4 Q^{2}-1}
\end{aligned}
$$

Taking the ratio of these two equations we obtain:

$$
\begin{equation*}
\frac{\mathrm{W}_{2}}{\mathrm{~L}_{2}}=\frac{\sin \theta+\cos \theta \sqrt{4 \mathrm{Q}^{2}-1}}{\sqrt{4 \mathrm{Q}^{2}-1}} \tag{10}
\end{equation*}
$$

$I_{0}=\mathrm{g}_{\mathrm{m} 1} / \mathrm{C}_{\mathrm{x}}$
$\alpha_{L}=g_{\mathrm{m} 2} / \mathrm{C}_{\mathrm{x}}$

Observe that the pole Q is determined by the dimensions of the lossy device!

Example:

Using the single-stage lossy integrator, design the integrator to meet ${\underset{V}{V_{D D}}}^{\text {given }}$ ω_{0} and Q requirement

$$
\begin{gathered}
\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~V}_{\mathrm{EB} 1}}{\mathrm{C}_{\mathrm{X}}}\left[\frac{\mathrm{~W}_{1}}{\mathrm{~L}_{1}}\right]=\frac{\omega_{0}}{(\sin \theta) 2 \mathrm{Q}} \sqrt{4 \mathrm{Q}^{2}-1} \\
\frac{\mathrm{~W}_{2}}{\mathrm{~L}_{2}}=\frac{\sin \theta+\cos \theta \sqrt{4 Q^{2}-1}}{\sqrt{4 \mathrm{Q}^{2}-1}}
\end{gathered}
$$

Still must obtain $W_{1} / L_{1}, V_{E B 1}$, and C_{X} from either of these equations
Although it appears that there might be 3 degrees of freedom left and only one constraint (one of these equations), if these integrators are connected in a loop, the operating point (Q-point) will be the same for all stages and will be that value where $V_{\text {out }}=V_{\text {in }}$. So, this adds a second constraint.
Setting $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }}$, and assuming $\mathrm{V}_{\mathrm{T} 1}=\mathrm{V}_{\mathrm{T} 2}$, we obtain from KVL

$$
\begin{equation*}
V_{D D}=V_{E B 1}+V_{E B 2}+2 V_{T} \tag{11}
\end{equation*}
$$

But $\mathrm{V}_{\mathrm{EB} 1}$ and $\mathrm{V}_{\mathrm{EB} 2}$ are also related in (7)

Example:

Using the single-stage lossy integrator, design the integrator to meet ${ }_{V_{D D}}$ given ω_{0} and Q requirement

$$
\begin{align*}
& \frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~V}_{\mathrm{EB} 1}}{\mathrm{C}_{\mathrm{X}}}\left[\frac{\mathrm{~W}_{1}}{\mathrm{~L}_{1}}\right]=\frac{\omega_{0}}{(\sin \theta) 2 \mathrm{Q}} \sqrt{4 \mathrm{Q}^{2}-1} \tag{8}\\
& \frac{\mathrm{~W}_{2}}{\mathrm{~L}_{2}}=\frac{\sin \theta+\cos \theta \sqrt{4 \mathrm{Q}^{2}-1}}{\sqrt{4 \mathrm{Q}^{2}-1}} \tag{10}
\end{align*}
$$

Still must obtain $W_{1} / L_{1}, V_{E B 1}$, and C_{X} from either of these equations

$$
\begin{align*}
& V_{D D}=V_{E B 1}+V_{E B 2}+2 V_{T} \tag{11}\\
& V_{E B 2}=V_{E B 1} \sqrt{\frac{W_{1} L_{2}}{W_{2} L_{1}}} \tag{7}
\end{align*}
$$

$$
\begin{equation*}
\int V_{E B 1}=\frac{V_{D D}-2 V_{T}}{1+\sqrt{\frac{W_{2} L_{1}}{W_{1} L_{2}}}} \tag{12}
\end{equation*}
$$

Substituting (10) into (12) and then into (8) we obtain

$$
\begin{equation*}
\frac{\mu C_{O X}}{C_{X}}\left[\frac{W_{1}}{L_{1}}\right]\left(\frac{V_{D D}-2 V_{T}}{1+\sqrt{\left(\frac{W_{1}}{L_{1}}\right)^{-1}\left(\frac{\sin \theta+\cos \theta \sqrt{4 Q^{2}-1}}{\sqrt{4 Q^{2}-1}}\right)}}\right)=\frac{\omega_{0}}{(\sin \theta) 2 Q} \sqrt{4 Q^{2}-1} \tag{13}
\end{equation*}
$$

Example:

Using the single-stage lossy integrator, design the integrator to meet a given ω_{0} and Q requirement

$$
\begin{gather*}
\frac{W_{2}}{L_{2}}=\frac{\sin \theta+\cos \theta \sqrt{4 Q^{2}-1}}{\sqrt{4 Q^{2}-1}} \tag{10}\\
\frac{\mu \mathrm{C}_{\mathrm{Ox}}}{\mathrm{C}_{\mathrm{x}}}\left[\frac{\mathrm{w}_{1}}{\mathrm{~L}_{1}}\right]\left(\frac{\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}_{\mathrm{T}}}{1+\sqrt{\left(\frac{W_{1}}{L_{1}}\right)^{-1}\left(\frac{\sin \theta+\cos \theta \sqrt{4 \mathrm{Q}^{2}-1}}{\sqrt{4 \mathrm{Q}^{2}-1}}\right)}}\right)=\frac{\omega_{0}}{(\sin \theta) 2 \mathrm{Q}} \sqrt{4 \mathrm{Q}^{2}-1}
\end{gather*}
$$

There is still one degree of freedom remaining. Can either pick W_{1} / L_{1} and solve for C_{x} or pick C_{x} and solve for $\mathrm{W}_{1} / \mathrm{L}_{1}$.

Explicit expression for W_{1} / L_{1} not available
Tradeoffs between C_{x} and W_{1} / L_{1} will often be made
Since $\mathrm{V}_{\text {OUTQ }}=\mathrm{V}_{T}+\mathrm{V}_{\text {EB1 }}$, it may be preferred to pick $\mathrm{V}_{\text {EB1 }}$, then solve (12) for $\mathrm{W}_{1} / \mathrm{L}_{1}$ and then solve (13) for C_{x}
Adding I_{B} will provide one additional degree of freedom and will relax the relationship between $V_{\text {outa }}$ and W_{1} / L_{1} since (7) will be modified

Stay Safe and Stay Healthy !

End of Lecture 33

